# Some conjectures on energy and Estrada index of *CNC<sub>k</sub>[n]*nanocones

### MEHAR ALI MALIK, RASHID FAROOQ<sup>\*</sup>

Department of Mathematics, School of Natural Sciences, National University of Sciences and Technology, H-12, Islamabad, Pakistan

In this paper, we suggest conjectures to approximate the values of energy and Estrada index of  $CNC_k[n]$  nanocones using computational tools. We conjecture that the energy and Estrada index of  $CNC_k[n]$  nanocones,  $k \ge 3$ , can be estimated by the curves(2.56(k-2)+5.12)n<sup>1.854</sup>+3.87(k-2)+7.717 and (5.21(k-2)+10.41)n<sup>1.861</sup>+4.585(k-2)<sup>1.225</sup>+18.85, respectively.

(Received March 5, 2015; accepted March 19, 2015)

Keywords: Nanocones, Energy, Estrada index

### 1. Introduction

Carbon nanocones have been observed since 1968 or even earlier [10], on the surface of naturally occurring graphite. Their bases are attached to the graphite and their height varies between 1 and 40 micrometers. Their walls are often curved and are less regular than those of the laboratory made nanocones.

Carbon nanostructures have attracted considerable attention due to their potential use in many applications including energy storage, gas sensors, biosensors, nanoelectronic devices and chemical probes [15]. Carbon allotropes such as carbon nanocones and carbon nanotubes have been proposed as possible molecular gas storage devices [1, 20]. More recently, carbon nanocones have gained increased scientific interest due to their unique properties and promising uses in many novel applications such as energy and gas storage [19].

Let *G* be an *n*-vertex molecular graph with vertex set  $V(G) = \{v_1, v_2, ..., v_n\}$  and edge set E(G). The vertices of *G* correspond to atoms and an edge between two vertices corresponds to the chemical bond between these vertices. The *adjacency matrix*  $A(G) = [a_{ij}]_{n \times n}$  of the graph *G* is defined by:

$$a_{ij} = \begin{cases} 1 & v_i v_j \in E(G) \\ 0 & otherwise \end{cases} (\forall v_i, v_j \in V(G)).$$

The characteristic polynomial of G is denoted by  $\Phi(G, \lambda)$  and is defined by

$$\Phi(G,\lambda) = \det(\lambda I_n - A(G)),$$

where  $I_n$  denotes the identity matrix of order n. The roots of  $\Phi(G, \lambda) = 0$  are called the eigenvalues of G; we denote these eigenvalues by  $\lambda_1, \lambda_2, \dots, \lambda_n$ . The multiset of eigenvalues of G is called the *spectrum* of G. Since a molecular graph G is simple, the matrix A(G)is real and symmetric with zero trace. Thus all eigenvalues of G are real and their sum is zero [4]. The *energy* of the graph G is defined by

$$E(G) = \sum_{i=1}^{n} |\lambda_i|.$$
<sup>(1)</sup>

This mathematical quantity was first proposed by Gutman [12] in 1978. However, its chemical roots lie in Hückel Molecular Orbital Theory, which was proposed in 1930's. Hückel's method allows a chemist to approximate the energies associated to the  $\pi$ -electron orbitals in conjugated hydrocarbons. This graph invariant correlates well with the chemical quantity known as total  $\pi$ -electron energy of conjugated hydrocarbon molecules [14]. For more details of graph energy and its chemical significance, see [4, 11, 13, 19].

Estrada [5] introduced a graph-spectrum based invariant; called the *Estrada index* and defined it by

$$EE(G) = \sum_{i=1}^{n} \exp^{\lambda_i}.$$
 (2)

Since its invention, the Estrada index has found noteworthy chemical applications. It is used to quantify the degree of folding of proteins and some other long-chain biomolecules [5, 6, 7]. Moreover, Estrada and RodrAguez [9] have shown that the Estrada index provides a measure of centrality of complex networks. Recently, Ashrafi et al. [2, 3] and Malik et al. [16] studied the energy and Estrada index of nanotubes and nanocones. For further details, the reader is

referred to [8, 17].

The molecular graph of  $CNC_k[n]$  nanocones has a conical structure with a cycle of length k at its core and n layers of hexagons placed at the conical surface around its center (see Fig. 1). Ashrafi and Sadati [3] suggested a curve to estimate the energy and Estrada index of  $CNC_s[n]$  nanocones. In this paper, we estimate the energy and Estrada index of  $CNC_k[n]$  nanocones for  $k \ge 3$  by suggesting general curves. These curves give much better approximations of energy and Estrada index of  $CNC_s[n]$  as compared to the curves suggested by Ashrafi and Sadati [3].



Fig. 1. The graph of  $CNC_k[n]$  nanocone.

### 2. Energy and Estrada index of CNC<sub>k</sub>[n] nanocones (for k=3,4,5)

In this section, we explain the computational procedure to calculate the energy and Estrada index of  $CNC_k[n]$  nanocones for k = 3,4,5.

The molecules of  $CNC_3[n]$  are drawn in HyperChem [21] for  $1 \le n \le 11$ . The adjacency matrices of these molecular graphs are constructed with the help of TopoCluj [18]. Then the energy and Estrada index are calculated using MATLAB. The obtained data is shown in Table 1.

By using "cftoolbox" of MATLAB, a power curve of the form  $an^b + c$  is fitted to the data shown in Table 1. A polynomial can approximate a smooth curve with small error and the curves with exponential increase are better fitted with power or exponential functions. Our calculations show that the behaviour of energy and Estrada index of nanocones is exponential. Thus the energy and Estrada index of  $CNC_3[n]$ nanocones can be estimated by the following curves:

$$E(CNC_3[n]) \cong 7.68n^{1.854} + 11.75,$$
 (3)

$$EE(CNC_3[n]) \cong 15.62n^{1.861} + 23.44.$$
 (4)

Next, we calculate  $E(CNC_4[n])$  and  $EE(CNC_4[n])$  by following the same procedure as we followed before. The curves given by equations (5) and (6), estimating the energy and Estrada index of  $CNC_4[n]$ , are obtained from the data presented in Table 2.

$$E(CNC_{4}[n]) \cong 10.24n^{1.854} + 15.13,$$
 (5)

$$EE(CNC_4[n]) \cong 20.83n^{1.861} + 29.57.$$
 (6)

Table 1. The exact values of energy and Estrada index of  $CNC_3[n]$  nanocones,  $1 \le n \le 11$ , calculated by using equations (1) and (2).

| Energy            | Estrada index                                                                                                                                                                                                                                |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 17.2859184602652  | 34.90228208693608                                                                                                                                                                                                                            |
| 39.92799424358724 | 80.96364519114939                                                                                                                                                                                                                            |
| 71.95828121952398 | 146.6524905652332                                                                                                                                                                                                                            |
| 113.3970122940882 | 231.9695783788370                                                                                                                                                                                                                            |
| 164.2574898928459 | 336.9149088724020                                                                                                                                                                                                                            |
| 224.5486057576022 | 461.4884820459496                                                                                                                                                                                                                            |
| 294.2762041727111 | 605.6902978994802                                                                                                                                                                                                                            |
| 373.4440212903026 | 769.5203564329929                                                                                                                                                                                                                            |
| 462.0544073288664 | 952.9786576464878                                                                                                                                                                                                                            |
| 560.1088533736765 | 1156.065201539966                                                                                                                                                                                                                            |
| 667.6083318445358 | 1378.779988113426                                                                                                                                                                                                                            |
|                   | Energy<br>17.2859184602652<br>39.92799424358724<br>71.95828121952398<br>113.3970122940882<br>164.2574898928459<br>224.5486057576022<br>294.2762041727111<br>373.4440212903026<br>462.0544073288664<br>560.1088533736765<br>667.6083318445358 |

Table 2. The exact values of energy and Estrada index of  $CNC_4[n]$  nanocones,  $1 \le n \le 11$ , calculated by using equations (1) and (2).

| n  | Energy           | Estrada index    |
|----|------------------|------------------|
| 1  | 22.6552379446429 | 44.8518750239294 |
| 2  | 52.4773417297321 | 106.266119700321 |
| 3  | 95.4991278556304 | 193.851246567694 |
| 4  | 150.572271474423 | 307.607363652473 |
| 5  | 218.542216587352 | 447.534470977226 |
| 6  | 298.839920372652 | 613.632568541957 |
| 7  | 391.886727620073 | 805.901656346664 |
| 8  | 497.402271470619 | 1024.34173439135 |
| 9  | 615.582318258625 | 1268.95280267601 |
| 10 | 746.305658242764 | 1539.73486120065 |
| 11 | 889.649819060568 | 1836.68790996526 |

Ashrafi and Sadati [3] conjectured that the energy and Estrada index of  $CNC_5[n]$  nanocones can be estimated by the equations

$$E(CNC_5[n]) = 28.7372(1.2)^{n-1}, \tag{7}$$

$$EE(CNC_5[n]) = 55.5639(1.2)^{n-1}.$$
 (8)

The exact values of energy and Estrada index of

 $CNC_5[n]$  nanocones calculated by using equations (1) and (2) are given in Table 3. Our calculations suggest that the energy and Estrada index of  $CNC_5[n]$  nanocones can be estimated by the exponential curves given by

$$E(CNC_5[n]) \cong 12.8n^{1.854} + 19.49,$$
 (9)

$$EE(CNC_5[n]) \cong 26.04n^{1.861} + 36.46.$$
 (10)

One can easily check that the equations (9) and (10) give higher accuracy as compared to equations (7) and (8). For example, for n = 11 the equations (7) and (8) give

 $E(CNC_{5}[11]) = 177.93317, EE(CNC_{5}[11]) = 344.03702.$ 

However, equations (9) and (10) give

 $E(CNC_{5}[11]) = 1110.8097, EE(CNC_{5}[11]) = 2294.1939,$ 

which is much closer to the exact values of energy and Estrada index of  $CNC_5[n]$  nanocones.

Table 3. The exact values of energy and Estrada index of  $CNC_5[n]$  nanocones,  $1 \le n \le 11$ , calculated by using equations (1) and (2).

| n                    | Energy            | Estrada index     |  |
|----------------------|-------------------|-------------------|--|
| 1                    | 28.73724086797208 | 55.56392932367799 |  |
| 2 66.43060911255543  |                   | 132.3316121087914 |  |
| 3 119.8435927566387  |                   | 241.8130206666559 |  |
| 4                    | 188.8925953205016 | 384.0081670226269 |  |
| 5                    | 273.6709036427948 | 558.9170511785687 |  |
| 6                    | 374.1500925987631 | 766.5396731344816 |  |
| 7 490.3666383558780  |                   | 1006.876032890366 |  |
| 8 622.3109849474412  |                   | 1279.926130446221 |  |
| 9 769.995980912568   |                   | 1585.68996580205  |  |
| 10 933.4195515448562 |                   | 1924.167538957842 |  |
| 11 1112.585456091773 |                   | 2295.358849913610 |  |

## 3. Energy and Estrada index of $CNC_k[n]$ nanocones (for $k \ge 3$ )

One can observe that the equations (3), (5) and (9) are of the form  $an^b + c$ . Here b = 1.854 and the coefficients a and c increase linearly. We estimate the coefficients a and c, for  $k \ge 3$ , as follows

a = 2.56(k-2) + 5.12, c = 3.87(k-2) + 7.717.

Similarly, the equations (4), (6) and (10), are of the form  $an^b + c$ . Here b = 1.861 and the coefficients a and c respectively increase linearly and exponentially. We estimate the coefficients a and c, for  $k \ge 3$ , as follows.

$$a = 5.21(k-2) + 10.41$$
,  $c = 4.585(k-2)^{1.225} + 18.85$ .

We suggest general curves to estimate the energy and Estrada index of  $CNC_k[n]$  nanocones  $(k \ge 3 \text{ and } n \ge 1)$ by

$$E(CNC_{k}[n]) = (2.56(k-2)+5.12)n^{1.854}+3.87(k-2)+7.717,$$
(11)

 $EE(CNC_k[n]) = (5.21(k-2)+10.41)n^{1.861}+4.585(k-2)^{1.225}+18.85.$ (12)

### 4. Analysis of the results and conclusion

Since the molecular graphs have usually large order, it becomes very hard to obtain and handle their data. In such cases, the computational and statistical methods provide very useful tools. These tools reduce the time and effort that is required to perform a certain task. In this context, we have estimation tools to obtain the desired quantities by extrapolation. We have derived the approximation curves given by equations (11) and (12) for the energy and Estrada index of  $CNC_k[n]$  nanocones. Some estimated values of  $E(CNC_k[n])$  and  $EE(CNC_k[n])$  calculated from equations (11) and (12), respectively, are compared with the corresponding exact values in Table 4.

For  $k \in \{3,4,\ldots,10\}$  the curves given by equations (11) and (12) give a good approximation of energy and Estrada index of  $CNC_k[n]$  nanocones. However, it is not certain that (11) and (12) can give a good approximation of energy and Estrada index for larger values of k.

| [ <i>k</i> , <i>n</i> ] |           | Energy      | Estrada index |
|-------------------------|-----------|-------------|---------------|
| [5,12]                  | Exact     | 1307.493926 | 2699.263899   |
|                         | Estimated | 1301.693015 | 2691.051099   |
| [5,13]                  | Exact     | 1518.146055 | 3135.882685   |
|                         | Estimated | 1506.840599 | 3117.446990   |
| [7,4]                   | Exact     | 264.4223902 | 537.4529550   |
|                         | Estimated | 261.2510052 | 532.8954912   |
| [7,5]                   | Exact     | 383.1230028 | 782.325393    |
|                         | Estimated | 381.2505556 | 780.5646281   |
| [8.4]                   | Exact     | 302.0061802 | 614.2283756   |
| [0,4]                   | Estimated | 298.5758631 | 609.8857596   |
| [8,5]                   | Exact     | 437.7879216 | 894.0825902   |
|                         | Estimated | 435.7182063 | 892.9459060   |
| [9,5]                   | Exact     | 492.5828863 | 1005.842418   |
|                         | Estimated | 490.1858572 | 1005.643401   |
| [9,6]                   | Exact     | 673.4318294 | 1379.563137   |
|                         | Estimated | 673.3275706 | 1384.185845   |
| [10 5]                  | Exact     | 547.3418073 | 1117.602626   |
| [10,5]                  | Estimated | 544.6535079 | 1118.621264   |

Table 4. Comparison of exact values of energy and Estrada index of  $CNC_k[n]$  nanocones calculated by using equations (1) and (2) with the corresponding estimated values calculated by using (11) and (12).

#### References

- [1] O. Adisa, B. J. Cox, J. M. Hill, Carbon **49**, 3212 (2011).
- [2] A. R. Ashrafi, Optoelectron. Adv. Mater. Rapid Comm. 4(1), 48 (2010).
- [3] A. R. Ashrafi, M. Sadati, Optoelectron. Adv. Mater. Rapid Comm. 3(8), 821 (2009).
- [4] D. Cvetkovic, M. Doob, H. Sachs, Spectra of Graphs-Theory and Application, third ed., Johann Ambrosius Barth Verlag, Heidelberg, Leipzig, 1995.
- [5] E. Estrada, Chem. Phys. Lett. **319**, 713 (2000).
- [6] E. Estrada, Bioinformatics 18, 697 (2002).
- [7] E. Estrada, Proteins **54**, 727 (2004).
- [8] E. Estrada, Phys. Rev. E. 75, 16 (2007).
- [9] E. Estrada, J. A. RodrAguez-Velazquez, Phys. Rev. E.72, 46 (2005).
- [10] J. Gillot, W. Bollmann, B. Lux, Carbon, 6, 381 (1968).
- [11] I. Gutman, J. Algebr. Comb. App. Springer-Verlag, Berlin, 196 (2001).

- [12] I. Gutman, Steiermarkisches Mathema- tisches Symposium (Stift Rein, Graz, 1978), 103, 1 (1978).
- [13] I. Gutman, N. Trinajstic, Chem. Phys. Lett. 17, 535 (1972).
- [14] I. Gutman, X. Li, Y. Shi, Graph Energy, New York: Springer, 2012.
- [15] S. Iijima, Nature, **354**, 56 (1991).
- [16] M. A. Malik, R. Farooq, Optoelectron. Adv. Mater. Rapid Comm. 9(1), 311 (2015).
- [17] N. Trinajstic, Chemical Graph Theory, CRC Press, Boca Raton, FL, 1992.
- [18] M. V. Diudea, O. Ursu, Cs. L. Nagy, TOPOCLUJ, Babes-Bolyai University, Cluj 2002.
- [19] M. Yudasaka, S. Iijima, V. H. Crespi, Top. Appl. Phys. 111, 605 (2008).
- [20] J. Zhao, A. Buldum, J. Han, J.P. Lu, Nanotechnology, 13, 195 (2002).
- [21] HyperChem package Release 7.5 for Windows, Hypercube Inc., 1115 NW 4th Street, Gainesville, Florida 32601, USA 2002.

<sup>\*</sup>Corresponding author: farooq@sns.nust.edu.pk